
GNO Shell Users’ Manual

Tim Meekins

Albert Chin

Jawaid Bazyar

Andrew Roughan

Devin Reade

GNO Shell Users’ Manual
by Tim Meekins, Albert Chin, Jawaid Bazyar, Andrew Roughan, and Devin Reade

Published 25 Aug 2012
Copyright © 1991-2012 Procyon Enterprises

Table of Contents
1. Getting Started with the GNO Shell ..1

1.1. Introduction ...1
1.2. Customizing the Shell Environment ...1
1.3. Invoking gsh ..3

2. Interacting with the GNO Shell..5
2.1. Executing Commands ...5
2.2. Commandline Editing ...5
2.3. Command Input...6
2.4. Command Editing ...6
2.5. History Editing..8
2.6. Command, Filename, and Variable Completion ...9
2.7. Other Ways of Entering Commands ...10

2.7.1. Terminal Input ..10
2.7.2. Script File ...10

3. Using the GNO Shell More Productively...11
3.1. What Does This Command Do? ...11
3.2. Option Arguments...11
3.3. Entering Multiple Commands...13
3.4. Using Aliases ..13
3.5. Redirecting Input and Output..14
3.6. Pipelines ..15
3.7. Background Execution of Commands ..16
3.8. Job Control ..18
3.9. Working with Pathnames ..19
3.10. Pathname Expansion ...19
3.11. Quoting Special Characters...21
3.12. How gsh Finds a Command ..22

4. Builtin Command Reference ..23
4.1. Builtin vs External Commands ...23
4.2. Builtin Shell Commands ...23
4.3. Kernel Commands...26
4.4. Environment Commands...29

5. Shell Variables..31
5.1. Using Shell Variables ..31
5.2. Scope of Shell Variables ...31
5.3. Description of Predefined Shell Variables ..31
5.4. Accessing Shell Variables ...34

A. Prefix Conventions ..35
B. Gsh Errors ...36

B.1. Generic gsh Errors..36
B.2. Command Editing Errors..36
B.3. Syntax Errors ..36
B.4. Execution Errors...37
B.5. Builtin Command Errors ..37

iii

C. Non-Compliant Applications ...39
D. Termcaps..40
Glossary ..41

iv

List of Tables
3-1. GSH Redirection Operators..15
3-2. GSH Wildcard Operators ...20
4-1. bindkey Functions ..23
4-2. Kernel Debug Flags ..29
5-1. Prompt Special Characters ...33
A-1. GS/OS Prefix Conventions ..35

v

Chapter 1. Getting Started with the GNO Shell

“ Computer operating systems are among the most complex objects created by mankind... ” -- Douglas
Comer, Operating System Design, the XINU Approach

1.1. Introduction

The GNO shell is an integral part of the GNO Multitasking Environment (GNO/ME). The GNO shell
provides the interface between the user and the GNO Kernel. While both work together, the jobs they
perform are quite different. This manual documents the functions of the shell.

The user interacts with the shell through a command-line interface. Command-line interfaces provide a
unique way of interacting with the operating system. Unlike GUIs (Graphical User Interfaces), with
which you are already familiar with by using programs such as the Finder and ShrinkIt! GS, all
commands are typically entered using the keyboard. The shell interprets commands and passes them to
the kernel for control and execution.

The command-line interface will be unfamiliar to some people However, once the command-line
interface has been mastered, the user should have no difficulty using any current or future GNO
applications. Those of you already familiar with Unix interfaces, such as the C shell, Bourne shell, and
Korn shell, or the ORCA shell on the Apple IIGS, will begin to realize the advantages which GNO/ME is
able to provide.

The way this manual is presented allows the complete beginner to simply work through the chapters in a
chronological prder. Chapter 2 familiarises the user with entering basic commands whereas the more
powerful GNO/ME features are introduced in Chapter 3. Chapter 4 documents the commands which are
built into the GNO Shell and Chapter 5 explains shell variables which give the user control over how
their installation functions.

1.2. Customizing the Shell Environment

When gsh, the implementation of the GNO Shell, is executed, it reads in and processes the gshrc file.
This file contains start-up instructions for the shell, which can be used to customize the operation of the
shell and other aspects of the system. It is created by the GNO Installer during the installation process.

The following is a sample gshrc file (line numbers have been added for convenience):

1 ###
2 #
3 # GNO 2.0 gshrc file
4 #

1

Chapter 1. Getting Started with the GNO Shell

5 ###
6 #
7 # Initialize our environment
8 #
9 set path=":hard:gno:bin :hard:gno:usr:bin"
10 set prompt="[%h] %S%t%s %C> "
11 set home=":hard:gno:user:root"
12 set term=gnocon
13 export path prompt home term
14 setenv history=100 savehist=25
15 ###
16 #
17 #Set up standard prefixes for utilities.
18 #
19 ###
20 prefix 2 :software:orca:libraries
21 prefix 3 :software:orca
22 prefix 4 :software:orca:shell
23 prefix 5 :software:orca:languages
24 prefix 6 :software:orca:utilities
25 prefix 7 :tmp
26 ###
27 #
28 # Set up prefixes for Orca2.0(tm)’s benefit
29 #
30 ###
31 prefix 13 :software:orca:libraries
32 prefix 14 :software:orca
33 prefix 15 :software:orca:shell
34 prefix 16 :software:orca:languages
35 prefix 17 :software:orca:utilities
36 alias ls ’ls -CF’
37 alias dir ’ls -al’
38 alias cp ’cp -i’
39 alias rm ’cp -p rm’
40 alias mv ’cp -p mv’
41 setenv usrman=’/usr/man’
42 set fignore=’.a .root .sym’
43 alias zcat ’compress -cd’
44 setenv pager=less
45 setenv less=-e
46 set nonewline=1
47 #
48 # Move to home directory
49 #
50 cd

When you install GNO/ME, the GNO installer knows where to find the GNO utilities and any ORCA
utilities you may have. Unfortunately it does not know where all the other utilities and applications that
you may wish to use are located. It is therefore necessary to edit the setup file in order to tell the GNO
shell where these programs are on your hard disk.

2

Chapter 1. Getting Started with the GNO Shell

The setup file, gshrc, is located in the /usr directory of the path where you installed GNO/ME. You can
use any text editor from the desktop to edit the gshrc file, or if you are already familiar with the editor vi
you can use this utility after launching the GNO kernel.

Line 9 is the statement that we are concerned with. Hard represents the name of your particular hard
drive volume where you have installed GNO/ME.

9 set path=":hard:gno:bin :hard:gno:usr:bin"

You will see that spaces have been inserted between pathnames. The space is the pathname separator and
the colon has been used as the path delimiter for this specific variable, PATH. As an exercise, add your
system directory to this statement. Line 9 should now look like this:

9 set path=":hard:gno:bin:hard:gno:usr:bin :hard:system"

What you have just done allows the GNO shell to find the Finder application. Now go ahead and add any
pathnames that hold utilities or applications that you will use frequently from GNO/ME. It should also
be noted that it is possible to have more than one pathname containing EXE, SYS16, or EXEC files; this
is impossible under ORCA. The PATH variable is discussed thoroughly in Chapter 5.

For now, the remaining lines of the gshrc file do not need editing. As you gain an understanding of the
system you may wish to make further changes to the gshrc file. Make sure you save the file before you
exit the editor.

It is possible to modify these instructions while the GNO shell is active, but any changes will be lost
upon exiting gsh. If you wish the changes to remain effective for the next session you must add them to
the gshrc file.

By customizing the gshrc file it is possible to make the GNO environment more like UNIX, the ORCA
environment, or something completly different. Customization of the GNO environment leads to greater
user productivity.

1.3. Invoking gsh

GNO/ME can be launched from a program launcher, such as the System 6.0 Finder. Launch the GNO
Kernel program, kern by double clicking on it. The GNO kernel automatically executes the supplied
GNO shell, gsh.

The prompt, “gsh# ” indicates that gsh is ready to receive input from the keyboard.

To start a new gsh from the command-line simply type gsh. If multiple copies of the gsh process are
undesirable, use the command source gsh instead. This is useful for testing changes made to the gshrc

3

Chapter 1. Getting Started with the GNO Shell

file. source is a built-in comand which is discussed in Chapter 4.

4

Chapter 2. Interacting with the GNO Shell

2.1. Executing Commands

A command consists of two parts: a name and its arguments. The command name is the name used to
start the command. The name is usually the name of a file which can be executed. The only exceptions
are commands which are built-in to the shell. These commands are documented in Chapter 4. Any shell
utility command with a filetype of EXE, SYS16, or EXEC, can be executed in this fashion. The
command name must be separated from the command arguments with a space.

The command arguments are parameters that the command takes as data to work with (In Applesoft
BASIC, "HELLO WORLD" would be an argument for the PRINT command). Command arguments are
separated from each other with a space. Note that although arguments extend the usefulness of a
command, not all commands have arguments. Any arguments entered after the command will be passed
by the shell to the program when it starts exectuting.

The examples below use the following commands:

qtime displays time in English text
echo prints arguments to the screen

Examples:

% qtime

It’s almost five.
% echo II Infinitum

II Infinitum

At the simplest level the user enters commands to the shell by typing them on the keyboard. gsh includes
a command-line editor to help the user enter and edit commands. The editor also provides a way to
modify and execute previous commands. Additionally the editor can help complete the names of
commands, filenames and variables.

2.2. Commandline Editing

The following sections provide a complete description of the functions of the command-line editor with
short examples depicting how each editing key works.

Throughout the examples the underline character, "_", will be used to represent the current cursor
position. In addition, "OA" is used to represent the Open Apple key and the term word is used to indicate
a string of characters consisting of only letters, digits, and underscores. To the right of a editing key entry

5

Chapter 2. Interacting with the GNO Shell

is the bindkey function name which is used to remap editing functions to new keys. This information is
included for reference purposes only. See Chapter 4 for more information on the bindkey command.

It should be pointed out that at this stage that the user should not be concerned with what the actual
commands used in the examples do, rather the user should concentrate on how the command-line editor
functions work.

2.3. Command Input

These command-line editor keys deal with entering text directly on the command-line.

RETURN

Newline.

The return key is used to terminate line input. gsh then interprets the command on the line and acts
accordingly. The position of the cursor on the command-line does not matter.

CTRL-D

(no bindkey name)

Causes gsh to exit if it was the first character typed on the command-line. If there are still jobs
running in the background or stopped, gsh will display the message "There are stopped jobs". If you
press CTRL-D a second time without an intervening command, gsh will terminate all the jobs in the
job list and exit.

CTRL-R

redraw

Moves to the next line and re-displays the current command-line. Use this to redraw the current line
if the screen becomes garbled.

CTRL-L

clear-screen

Clears the screen, moves the cursor to the top line, and redraws the prompt and any command-line
that was in the process of being edited.

6

Chapter 2. Interacting with the GNO Shell

2.4. Command Editing

These command-line editor keys allow editing of the command-line text.

CTRL-B
LEFT-ARROW

backward-char

Moves the cursor one character to the left. You cannot move past the first character on the line. If so,
gsh will output an error beep.

CTRL-F
RIGHT-ARROW

forward-char

Moves the cursor one character to the right. You cannot move past the last character on the line. If
so, gsh will output an error beep.

DELETE

backward-delete-char

Deletes the character to the left of the cursor. You can delete up to the first character on the
command-line.

CLEAR
CTRL-X

kill-whole-line

Deletes all characters on the command line and positions the cursor after the prompt.

CTRL-Y

kill-end-of-line

Deletes all characters from the cursor to the end of the command-line.

CTRL-D
OA-D

delete-char

Deletes the character under the cursor.

7

Chapter 2. Interacting with the GNO Shell

CTRL-A
OA-<

beginning-of-line

Moves the cursor to the beginning of the line.

CTRL-E
OA->

end-of-line

Moves the cursor to the first position past the last character on the line.

OA-RIGHT-ARROW

forward-word

Moves the cursor right to the last character of the current word.

OA-LEFT-ARROW

backward-word

Moves the cursor left to the beginning of the current word.

OA-E

toggle-cursor

Toggles input mode between insert and overstrike. Overstrike mode is distinguished by a solid
inverse cursor and insert mode by a blinking ’_’ (underscore) cursor. In overstrike mode, any
characters that are typed directly over-write those characters below the cursor. In insert mode, the
characters typed are inserted before the character below the cursor.

2.5. History Editing

These command-line editor keys allow access to previously entered commands. The GNO shell
automatically keeps track of previous commands in what is called a history buffer.

The maximum number of command-lines saved in the history buffer is determined by the shell variable .
A default value for this variable is set in the gshrc file that the GNO Installer creates. The lines saved to
the history buffer are kept between sessions. That is, when you exit gsh, $SAVEHIST command-lines are
saved to your $HOME/history file. When gsh is invoked again, all command-lines saved in the history
buffer will be available using history editing keys. See Section 5.3 for more information on the
HISTORY and SAVEHIST shell variables.

8

Chapter 2. Interacting with the GNO Shell

CTRL-P
UP-ARROW

up-history

Fetches the previous command-line. If the current command-line is the first line in the history
buffer, the next line fetched will be an empty command-line. If invoked again, the last line in the
history buffer will be displayed.

CTRL-N
DOWN-ARROW

down-history

Fetches the next command-line. If the current command-line is the last command line in the history
buffer, the next line fetched will be the first command-line in the history buffer.

2.6. Command, Filename, and Variable Completion

These command-line editor keys can be used to complete filenames, commands and variables.

CTRL-D

list-choices

Lists commands and pathnames that match the current word.

TAB

complete-word

Command, pathname and variable completion. If the cursor is positioned on the first word of the
command-line, command pathname is performed, else pathname or variable completion is
performed. The word is expanded to the closest matching command, pathname or variable.
Characters are appended up to the point that they would cause more than one. If a complete
pathname results for pathname completion, gsh appends a "/" if the pathname is a directory;
otherwise, it appends a space.

Note that if there is more than one match for the partial command, gsh will sound a beep on the
speaker. You can use the CTRL-D (list-choices) command to see the list of possible matches, and
should either finish entering the command manually or type enough additional characters to
guarantee a unique match.

9

Chapter 2. Interacting with the GNO Shell

If the FIGNORE environment variable is set, gsh ignores filenames (when doing completion) that
end with any of the suffixes in $FIGNORE. See Section 5.3 for more information regarding the
FIGNORE environment variable.

2.7. Other Ways of Entering Commands

2.7.1. Terminal Input

An example involving the connection of a terminal will be shown in Section 3.5 but it is necessary to
mention here that when using gsh over a terminal, some keystrokes must be slightly modified. This is
because there are no terminals that can transmit the OA key. Instead, a two-key sequence must be used
which replaces OA with ESC. For example, instead of pressing OA-E to toggle insert mode, you can type
ESC-E over a terminal to do the same thing.

If you will be using terminals seriously then you should install the Remote Access package.

2.7.2. Script File

While you would normally type commands on the command-line, you can also store a series of often
used commands in a file. A file containing such a series of commands is called a script. A script is
normally created by using a text editor.

By typing the name of the script file, the shell will execute it, line by line, as if you had typed each
command separately. The gshrc file presented in Section 1.2 is an example of a script file.

10

Chapter 3. Using the GNO Shell More
Productively

“ And then one day, hooray! Another way for gnomes to say hooray! ” -- Syd Barret, The Gnome

3.1. What Does This Command Do?

If you are unfamiliar with what a particular command actually does or what arguments it accepts, you
can check quickly by using the electronic manual. GNO/ME includes a utility called man which displays
the manual pages for a command whose name you supply as an argument. The man utility uses another
utility called more to actually display the pages nicely on the screen.

3.2. Option Arguments

As mentioned in Section 2.1, arguments are passed to a command to extend its usefulness. The
arguments presented in the last chapter were words, such as foo, bar and foo.c. Standards exist under
UNIX for programs to accept command-line option arguments. Option arguments (as the name suggests)
are optional. There are two standards, short options and long options. Short options are characters that
represent commands, whereas long options contain the entire option name.

Consider the following output of the CATALOG command from ProDOS:

/DEV
NAME TYPE BLOCKS MODIFIED CREATED ENDFILE

FINDER.DATA $C9 1 21-OCT-91 22:38 14-APR-90 18:24 260
FINDER.ROOT $C9 1 22-OCT-91 17:12 6-OCT-91 15:40 82
GENESYS DIR 1 21-OCT-91 23:37 25-APR-91 15:46 512
GSBUG DIR 1 21-OCT-91 23:38 19-JUL-90 16:48 512
MERLIN DIR 2 22-OCT-91 2:50 30-APR-91 20:21 1024
LIFEGUARD $B3 73 4-SEP-87 4:51 25-DEC-89 20:22 36608
ORCA DIR 2 22-OCT-91 17:12 14-SEP-89 18:27 1024
GNO DIR 2 22-OCT-91 17:12 13-AUG-91 16:36 1024
FAST.ANIM DIR 2 21-OCT-91 23:44 11-MAY-91 10:50 1024
MICOL DIR 2 22-OCT-91 3:10 14-JAN-90 2:46 1024
SRC DIR 1 21-OCT-91 23:44 7-AUG-91 20:30 512
NIFTYLIST DIR 2 21-OCT-91 23:44 29-JUL-91 4:04 1024
MCSRC DIR 1 21-OCT-91 23:45 7-AUG-91 20:34 512

BLOCKS FREE:43923 BLOCKS USED:21185 TOTAL BLOCKS:65108

11

Chapter 3. Using the GNO Shell More Productively

It is impossible to get any variation in the format of this output. While the GNO/ME utility ls serves the
same purpose as the command CATALOG from Applesoft BASIC, it has a wide number of options
which can tailor the output to specific needs. Here is how ls can be used to give similar output to the
CATALOG command:

gno% ls -l
:dev
total 45k
drw--rd 0000 dir 512 Oct 21 23:45 1991 MCSrc
drw--rd 0000 dir 1024 Oct 21 23:44 1991 NiftyList
drw--rd 0000 dir 1024 Oct 21 23:44 1991 fast.anim
drw--rd 0000 dir 512 Oct 21 23:37 1991 genesys
drw--rd 0000 dir 1024 Oct 22 17:29 1991 gno
drw--rd 0000 dir 512 Oct 21 23:38 1991 gsbug
drw--rd 0000 dir 1024 Oct 22 02:50 1991 merlin
drw--rd 0000 dir 1024 Oct 22 03:10 1991 micol
drw--rd 0100 dir 1024 Oct 22 17:28 1991 orca
drw--rd 0000 dir 512 Oct 21 23:44 1991 src

The -l short option argument tells ls to format the output in long format. ls supports only short options. If
ls did support long options, the above command could be changed to ls +format-long. This is clearly
more descriptive of what function ls will perform. For users to new to the UNIX environment, long
format options are more user-friendly. However, advanced UNIX users prefer short options because of
their brevity.

As indicated above, ls has a wide number of options available to format the output. Use the command "ls
-?" to get a short list of these options. It is left as an exercise for the user to discover how these options
affect the output of ls. For a complete description of the ls command and its options use the command
man ls.

As an example of the usage and importance of long options, the following is the result of the +help
option given to the coff utility. Note the use of both short and long options:

coff [-OPTIONS] filename [segment..] [loadsegment..]

OPTIONS DESCRIPTION
-v [+version] display coff’s version number
-D [+default] disable default options
-d [+asm] dump segment body in 65816-format disassembly
-T [+tool] interpret Toolbox, GS/OS, ProDOS, ROM calls
-x [+hex] dump segment body in hex (can be used with ’+asm’)
-l [+label] print expressions using labels (default is offsets)
-t [+infix] display expressions in infix form
-p [+postfix] display expressions in postfix form (default)
-m [+merlin] format of ’+asm’ to use merlin opcodes (default)
-o [+orca] format of ’+asm’ to use orca/m opcodes
-a [+shorta] assume 8-bit accumulator for disassembly
-i [+shorti] assume 8-bit index registers for disassembly
-s [+header] dump segment headers only
-n [+noheader] do not print segment headers

12

Chapter 3. Using the GNO Shell More Productively

-f [+nooffset] do not print offset into file
-h [+help] print this information, then quit
filename name of file to dump
[segment] names of segments in file to dump
[loadsegment] names of load segments in file to dump

The long options are much more descriptive, and provide a very easy way to remember options of
programs. If an option passed to a shell utility program is not understood by that program, you will
generally receive an error message stating that the option is not understood. If the program is
user-friendly, a brief list of supported options will also be displayed.

3.3. Entering Multiple Commands

It is possible to give multiple commands to the GNO shell for processing. To execute multiple
commands, place a semi-colon, ";", between them. The commands will be executed sequentially in the
order they are entered on the command-line. Take care not to exceed the 4096 character command-line
buffer. It is possible to execute multiple commands at the same time, this feature is discussed in Section
3.7.

As an example, to run the echo command and the ls command in succession, enter the following on the
command line:

% echo Running ls ; ls -l

The output of the preceeding command will display the string "Running ls" followed by the output of the
"ls -l" command.

3.4. Using Aliases

gsh provides a built-in command, alias, which allows any command you would type on the
command-line to be renamed. You are not limited to renaming a single command name. Rather, you
could rename an entire command-line, which could allow you to use the name "backup" to execute the
command "backup +source /system +destination /tape.drive". The alias command is also a very powerful
means of customizing your GNO environment to emulate other computing environments.

To emulate the ORCA environment, the following aliases could be entered into your gshrc file, or a
script called orca.alias that gshrc would run:

alias copy cp
alias cat "ls -l"
alias catalog "ls -l"
alias move mv

13

Chapter 3. Using the GNO Shell More Productively

alias rename mv
alias delete rm
alias type cat
alias prefix cd
alias create mkdir

If you alias a string containing multiple words, you must enclose the string in quotes, as done for the
catalog alias. gsh interprets the string as one value. If you do not include both the opening and closing
quotes, the alias command will notify you of your error.

You can view any alias’ that are set by entering the alias command without any arguments. The setting of
a particular alias can be viewed by entering one argument consisting of the name of the alias to view.

If you wish to remove an alias, use the command unalias with the aliased name as the argument. To
remove the aliases from the orca.alias file given above, you could do the following:

%unalias copy cat catalog move rename delete type prefix create

Unlike the alias command, the unalias command can take multiple arguments. See Section 4.2 for
further discussion of the alias and unalias commands.

3.5. Redirecting Input and Output

Most shell utilities write their output to the screen. However, under GNO/ME, like ORCA, it is possible
to redirect that output to a file or a GS/OS device. The output of the ls command above was imported into
this manual by redirecting it to a file. In addition to redirecting the output of a shell utility, it is also
possible to redirect the input of that utility. Consider the following gsh session:

[1]% echo this is a test
this is a test
[2]% echo this is a test > file1
[3]% cat file1
this is a test
[4]% cat < file1
this is a test

In the example above, cat takes input from "standard input". In command 3 above, cat takes as an
argument the filename file1 and writes the contents of that file to "standard output". Where no filename
argument is given, cat reads input from standard input and writes the output to standard output.

In the case of command 4 above, cat contains no arguments and therefore reads from standard input.
However, gsh interprets the "<" redirection operator and opens the file file1 for use as standard input.

14

Chapter 3. Using the GNO Shell More Productively

Therefore, cat will take its input from file1, even though it thinks it is reading input from standard
input. This input redirection is transparent to the utility, making it work with most shell utilities.

Command 2 above created a new file called file1. If this file had existed prior to the command then it
would have been erased. It is possible to append output to the end of the file by using the ">>"
redirection operator. Consider the following gsh session:

[5]% echo second line >> file1
[6]% cat file1
this is a test
second line

Output that is sent to "standard error", can also be redirected. The ">&" operator redirects standard error
to a file and ">>&" appends standard error to the end of the file. Below is a summary of the redirection
operators:

Table 3-1. GSH Redirection Operators

Output can be redirected to a storage device, printer, modem, or any other valid GNO or GS/OS device.
This provides a very powerful means of communicating directly with these devices from within gsh. One
quick and dirty example of redirection allows a background version of gsh to be run on a terminal
connected directly through the modem serial port:

[1]% gsh < ttya > ttya >& ttya &

3.6. Pipelines

In addition to the redirection operators, there is one additional operator which gives control over how
input and output are handled. The operator is a pipeline, "|". Pipelines allow the standard output of one
command to be used as the standard input to another command. This is almost equivalent to running the
first command with its output redirected to a temporary file, then running the second command with its
input redirected from the temporary file, then removing the temporary file. Pipelines make useful "filter"
processes where the output of one command can be sent to another command which filters the output to
whatever parameters you give the second command. As an example, you could display all the filenames
with the character "a" in their name:

[1]% echo foo > file1
[2]% echo abc >> file1
[3]% echo aabc >> file1

15

Chapter 3. Using the GNO Shell More Productively

[4]% echo GNO >> file1
[5]% echo standard >> file1
[6]% echo oof >> file1
[7]% cat file1
foo
abc
aabc
GNO
standard
oof
[8]% cat file1 | grep ’a’
abc
aabc
standard

Pipelines are useful when you wish to view lines of text in a file that contain a phrase, or if you want to
connect two programs directly, bypassing intermediate files. It is also possible to connect multiple
commands with multiple pipelines.

Pipelines are frequently used for paging output. The coff program mentioned previously prints the output
of an OMF disassembly to the screen but does not pause when a key is pressed. In order to pause the
display, the output must be piped through a paging utility. The ORCA shell requires that you wait for the
entire command to complete execution before the pipeline is processed. However, GNO/ME executes
both commands concurrently which allows the coff utility to execute while the paging utility displays the
program output. GNO/ME comes with two page utilities, more and less. Complete desciptions of coff,
more, and less can be found in the electronic manual using the man command.

3.7. Background Execution of Commands

A major benefit of GNO/ME is multitasking. Multitasking is a means of running multiple applications at
once (not literally but very close). On the Apple IIGS, GNO/ME accomplishes pre-emptive multitasking
by switching among applications that are running in the background. Any GNO/ME utility can be run in
the background. Applications running in the background generally run for the same period of time
(GNO/ME switches between applications 20 times a second).

To background a shell utility, place the "&" character at the end of the command-line. The GNO shell
displays a unique process ID and job number for each backgrounded command.

It is possible to use the background character "&" to separate commands as with the ";" character. Each
command with a trailing "&" is executed in the background.

Up to 32 processes can executed concurrently under the GNO Kernel.

16

Chapter 3. Using the GNO Shell More Productively

Warning: When you exit the GNO Shell all processes will be terminated including any you may have
running in the background.

Below is a sample session with background tasks:

[5] script> ps
ID STATE TT MMID UID TIME COMMAND
1 ready co 1002 0000 0:45 NullProcess
2 ready co 1007 0000 0:05 gsh

138 running co 1006 0000 0:00 ps
[6] script> cmpl +p script.c keep=script > outputfile &
[1] + 141 Running cmpl +p script.c keep=script &
[7] script> ps
ID STATE TT MMID UID TIME COMMAND
1 ready co 1002 0000 0:45 NullProcess
2 ready co 1007 0000 0:05 gsh

141 waiting co 1006 0000 0:00 cmpl +p script.c keep=script
142 ready co 100B 0000 0:00 5/cc
143 running co 100D 0000 0:00 ps

[8] script> cmpl +p script.asm keep=script1 > output2 & ps ; ls -s
[2] - 145 Running cmpl +p script.asm keep=script1 &
ID STATE TT MMID UID TIME COMMAND
1 ready co 1002 0000 0:45 NullProcess
2 ready co 1007 0000 0:05 gsh

141 waiting co 1006 0000 0:00 cmpl +p script.c keep=script
144 ready co 100E 0000 0:07 5/linker
145 ready co 100D 0000 0:00 cmpl +p script.asm keep=script1
146 running co 100F 0000 0:00 ps
147 ready co 1011 0000 0:00 5/asm65816
3 barf 1 outputfile 6 script.asm 1 script.root
1 foobar 19 script 3 script.c 36 script.sym
1 output2 6 script.a 6 script.mac 1 typescript

[9] script> cp script.asm script2 &
[3] 150 Running cp script.asm script2 &

[2] - Done cmpl +p script.asm keep=script1 &

[1] + Done cmpl +p script.c keep=script &

[3] - Done cp script.asm script2 &

[10] script> ps
ID STATE TT MMID UID TIME COMMAND
1 ready co 1002 0000 0:45 NullProcess
2 ready co 1007 0000 0:05 gsh

151 running co 1006 0000 0:00 ps

The first command line sends the ps command to the shell. ps lists the processes currently being
executed by the GNO kernel. The processes named gsh and NullProcess are always present. For a
complete description of the ps command, see Section 4.3.

17

Chapter 3. Using the GNO Shell More Productively

When a command is executing in the background, keyboard input is not sent to it. However, output is
still treated in the same way. If the command sends output to the standard output or standard error, the
screen will become cluttered. Try this example:

[1]% ls -l&
[2]% ls -l

Both the output of commands #1 and #2 will be sent to the screen. After command #1 is entered and you
begin typing command #2, you will see the output of the first "ls -l" command being sent to the screen
while you enter command #2. Utilities which produce output should have their standard output and
standard error redirected to a file when they are executed in the background. See Section 3.5.

Executing commands in the background hinders the performance of the Apple IIGS. This is not too
noticeable when one or two commands are being executed but performance will degrade more noticably
as more commands are started. The Apple IIGS was not designed as a multitasking computer so the
performance of GNO/ME should be understandable. If you have an accelerator (such as the Transwarp
GS or Zip GS) installed, performance of multiple tasks will be acceptable.

3.8. Job Control

Now that command backgrounding and multitasking have been discussed, some more definitions can be
mentioned. A process is a command which has been submitted to the shell for execution. gsh contains a
set of special commands which make dealing with processes much easier. gsh treats each command
entered at the command-line as a job, where a single job may contain multiple processes. For example:

% ls one command, one process, one job
% ls ; ps two commands, two processes, two jobs
% ls & ps two commands, two processes, two jobs
% ls | more two processes, one job

When a job is run from the shell, it can be in several modes of operation. Jobs can be in any of three
states: "running", "stopped", or "done". A job can be executing in either the foreground or the
background.

Commands exist to place a job in any mode of operation. When a job is run directly from a
command-line it is running and it is in the foreground. Since the command-line cannot be accessed, two
special keys have been defined: ^C kills the job and ^Z will stop the job. When the job is killed, it is
gone forever, but a stopped job can be restarted. When a job is stopped, the kernel suspends each of the
processes in the job.

Jobs that are running in the background or have been stopped can be accessed using several built-in
commands. The bg command will place a job in the background, placing it in the running state if
necessary. The fg command will similarly place a job in the foreground, and the stop command will stop
a backgrounded job. The kill command will terminate a job.

18

Chapter 3. Using the GNO Shell More Productively

Each time job control is accessed, a special job status line is displayed following the command. The first
item on the left in brackets is the job number. Next is a single character, either a ’+’, ’-’, or a blank. The
’+’ designates the currently accessed job, the ’-’ is the previously accessed job, and all other jobs are not
specified. The jobs command will display a list of all jobs.

Have another look at the example in Section 3.7; now more of the notation will be understandable.

Each of the special commands, bg, fg, stop, and kill, take an argument which specifies the job to perform
the operation on. The argument is either a number specifying the process id, or a ’%’ followed by one of
the following: ’+’ or ’-’ for the current job, a ’-’ for the previous job, or a number to specify any specific
job. If nothing follows the ’%’ or the argument is missing, then the current job is the default.

There is one additional way that a job may be stopped. If the job is placed in the background and it
attempts to read from the console, the job will be stopped, and the status line says "(tty input)" as the
reason for the job being stopped. The job should be foregrounded so that the user may enter input to the
program. It can then be placed back in the background as necessary (with ^Z and bg).

3.9. Working with Pathnames

To move easily to directories descended from the home directory, gsh provides the "~" (tilde) character.
This character represents the home directory. Therefore, if your home directory was
:hard:gno:home:root, you could use the command "cd ~" to move to the home directory (note that
"cd" without any arguments also defaults to the home directory). To move to subdirectories of the home
directory, you could use the command The tilde character is recognized by gsh before the command is
interpreted.

Another special sequence, "..", when used as part of a pathname, will strip the last path between
pathname seperators. For example, the pathname "/dev/gno/.." would be expanded to "/dev". The
"/gno" portion of the path is stripped as it is before the periods. This provides an excellent way to
backup into your directories. "Backing up" is limited by the volume directory of the device being used.

Additionally, the character "." can be used to signify the current directory.

3.10. Pathname Expansion

Many utilities supplied with gsh take, as an argument, a filename or filenames. The shell utilities cat, ls,
grep, and cp can take multiple filenames as arguments. If you wish to invoke any of these utilities on
filenames that have a sequence of characters in common (ie. AND, APPLE, SHK, TXT, FILE2, FILE3, etc),
gsh provides special characters, called regular expressions or wildcards, which match multiple filenames
without having to enter all filename arguments manually.

19

Chapter 3. Using the GNO Shell More Productively

Table 3-2. GSH Wildcard Operators

This method of matching filenames is known as "globbing". gsh performs globbing on the word prior to
executing the command. The following gsh session illustrates file globbing:

[1]% cd /dev/gno/utilities
[2]% ls
:dev:gno:utilities
CONV Crunch CrunchIIGS DeRez DiskCheck
DumpObj Duplicate EMACS Equal Express
Files LinkIIGS MakeBin MakeDirect OrcaDumpIIGS
Prizm ResEqual Search canon choose
clrff cmdfix coff compact count
detab dir dirff dumpfile eject
emacs.doc emacs.hlp emacs.rc emacs.tut help
init join link macgen makelib
mem online pageeject pause pwd
src
[3]% ls e*
:dev:gno:utilities
EMACS Equal Express eject emacs.doc
emacs.hlp emacs.rc emacs.tut
[4]% echo *r *m
dir Prizm mem
[5]% echo *i*
cmdfix CrunchIIGS Prizm DiskCheck Duplicate Files init
join LinkIIGS makelib MakeBin MakeDirect link dirff
dumpfile online OrcaDumpIIGS dir
[6]% echo NoMatch*
No match.
[7]% echo [a-f]*
coff canon cmdfix compact Crunch CrunchIIGS DeRez DiskCheck
DumpObj Duplicate EMACS emacs.doc emacs.hlp emacs.rc
emacs.tut Equal Express Files choose clrff count detab CONV
dirff dumpfile eject dir
[8]% echo [a-fs-t]*
coff canon cmdfix compact Crunch CrunchIIGS DeRez DiskCheck
DumpObj Duplicate EMACS emacs.doc emacs.hlp emacs.rc
emacs.tut Equal Express Files choose clrff count detab
Search src CONV dirff dumpfile eject dir
[9]% echo emacs?*
EMACS emacs.doc emacs.hlp emacs.rc emacs.tut
[10]% echo [^a-f]*
Prizm help init join LinkIIGS makelib MakeBin MakeDirect
link mem ResEqual Search src online pageeject pause
OrcaDumpIIGS pwd macgen

20

Chapter 3. Using the GNO Shell More Productively

[11]% echo [^a-fs-t]*
Prizm help init join LinkIIGS makelib MakeBin MakeDirect
link mem ResEqual online pageeject pause OrcaDumpIIGS pwd
macgen
[12]% echo ???
mem src pwd dir
[13]% echo ?
No match.
[14]% echo "???"
???
[15]% do you have a light?
No match.

As can be seen by the above example, character matches are case insensitive. The ProDOS file system
treats the filenames "file" and "FILE" as the same file. gsh recognizes this and does not detract from
the underlying file system.

File globbing makes passing arguments to commands much easier and much more powerful. You could
easily use "*.c" as an argument in a number of ways:

[1]% ls *.C lists all filenames ending in ".C"
[2]% cc *.C compiles all files ending in ".C"
[3]% more *.C displays contents of all files ending in ".C"

3.11. Quoting Special Characters

Beginning with Apple IIgs System Software 6.0, GS/OS is able to read files from Macintosh computers.
The Macintosh uses a filesystem known as HFS, which allows filenames to contain any character except
the colon (":"). Because a filename such as "emacs?*" is valid under HFS, care must be taken or
unexpected results will occur. The word "emacs?*" was used as a regular expression above to specify a
list of filenames beginning with the word "emacs" and one or more trailing characters. gsh does provide
a way to pass an argument which contains special shell characters to a command. This is known as
quoting an argument. There are three different ways to quote an expression:

1. The single quote will quote everything between the single quote marks. Thus, to display the contents
of a file on an HFS volume named "emacs?*", use the command: more ’emacs?*’

2. The double quote will quote everything between the double quote marks except variables; echo
"emacs?* $home" will product "emacs?* /dev/gno". See Chapter 5 for more on variables.

3. The backslash is used to quote one character. To pass "emacs?*" as a regular using the backslash,
one could enter the following: ls emacs\?*

One additional purpose of the quoting mechanism built into gsh is to add spaces to command arguments.
Each command and its arguments is separated by a space. Multiple spaces between arguments are treated
as one space. Thus, consider the following:

21

Chapter 3. Using the GNO Shell More Productively

% echo a b c
a b c
% echo ’a b c’
a b c

3.12. How gsh Finds a Command

gsh has a special variable, PATH, which specifies the directories and order of directories to search for
shell utilities. This variable is often setup in the gshrc file although it can be changed as often as
needed. The purpose of the PATH environment variable was discussed in Section 1.2.

When gsh starts up, it searches all directories specified in the PATH environment variable and establishes
a table of all commands, called a hash table. Because of this table, gsh "knows" where a command is and
can execute the command much faster than searching through all directories every time the command is
entered.

The search process begins with alias names. See Section 3.4. If an alias is found that matches the
command, the alias is replaced with its value and the command-line is again parsed. If it was not an alias,
gsh checks to see if it was a special built-in utility. The search process then searches for the name in the
hash table. If an entry is found in the hash table, the path name of the command is retrieved and the
command is executed. If an entry is not found, the current path is searched. If the command name is not
found, an error results.

When the PATH environment variable is changed, gsh does not automatically recreate the command hash
table. You need to issue the command rehash to recreate the hash table. The more pathnames specified,
the greater the delay in starting gsh and in invoking the rehash command. The following shell script
changes PATH and invokes the rehash command in one step.

echo Resetting PATH variable $PATH to $1
set path=$1
rehash

The $1 variable will be expanded with the first argument passed to the script.

rehash should also be used if a new utility is copied to one of the directories specified in the PATH
variable. Of course, it is possible to specify the absolute pathname of any command, but this is
undesirable if the command is frequently used.

22

Chapter 4. Builtin Command Reference

4.1. Builtin vs External Commands

The term "built-ins" is used to describe commands that exist within the shell itself. These utilities run
faster than external commands because the code is already loaded into memory. Files of type "EXE", on
the other hand, must be loaded into memory by gsh and executed. If an EXE command is executed again,
it might, again, have to be loaded into memory. This results in longer execution time for the program.

gsh has a number of built-in commands which allow you to work with the shell, the GNO kernel, and the
shell environment.

The following section describes the commands that are built-in to gsh. The "[..]" character sequence
represents an optional argument to a command. The term "SIGNAL" is used to represent one of the
signal names or numbers listed in Appendix D Signals. The sequence "..." means the command accepts
multiple arguments of the same type as the argument before the "..." sequence. The sequence "{..}" is
used to represent a set, which is a list of possible arguments to choose from.

4.2. Builtin Shell Commands

bindkey [-l] function string

Bindkey is used to customize the shell’s command-line editor. Any key on the keyboard can be
mapped to any of a number of functions. The various functions are as follows:

Table 4-1. bindkey Functions

23

Chapter 4. Builtin Command Reference

Keys are bound to functions, not vice-versa. This means that you can have any number of
commands refer to the same function. For example, the default bindings have CTRL-A and OA-<

both bound to beginning-of-line.

Most of the function names are self-explanatory, and are explained in Chapter 2, but a few deserve
discussion. raw-char is what you should bind a key that should be inserted into the command-line
as-is. The regular printable ASCII set, such as the letters a-z, numbers, etc. are bound to raw-char.
Control characters should not be bound to raw-char because the command-line editor will become
confused (most control characters act as special GNO/ME console feature codes - see the GNO
Kernel Reference Manual (http://www.gno.org/~gno/kern.html)).

Any keystroke that should be rejected by the editor should be bound to undefined-char. By
default, this includes control characters and OA-sequences that are not assigned to any editing
features. Any key bound to undefined-char will cause gsh to beep and ignore the key.

You can actually bind key sequences, not just keystrokes, to functions. There is no limit other than
memory to how many characters are in a command sequence.

Because terminals do not have the OA (Open Apple) key, OA is actually mapped by the kernel to a
two-character sequence consisting of ESC and the key. For example, OA-Y would actually produce
ESC-Y.

Control characters in the string are represented in ^X format; e.g. CTRL-A is represented by ^A.
ESC (and OA) is represented by ^[.

gno% bindkey kill-end-of-line ^K

map Ctrl-K to kill-end-of-line (like Emacs)
gno% bindkey clear-screen ^[^X

map OA-Clear to clear-screen

commands

Displays a list of all built-in shell commands.

cd [pathname]
chdir [pathname]

Changes the current working directory to pathname. If pathname is not given, the default home
directory (i.e. the value of the HOME environment variable) is used. This makes it easy to move
back to your home directory. Under gsh, unlike most UNIX shells, the cd is not necessary, except to
change automatically to your HOME directory. If the first word on the command line is neither a

24

Chapter 4. Builtin Command Reference

builtin nor an external command, but is instead the name of a directory, a cd is implied and
performed on the directory unless the NODIREXEC variable has been set.

clear

This command takes no arguments. When invoked, the screen will be cleared.

dirs

See pushd.

echo [-n] [arg ...]

Expands the "arg" expression(s) and outputs them to the screen. If the -n flag is specified, a
newline character is not output after the last arg expression. Special escape sequences may also be
included in the arguments, similar to those used in C strings:

exit

Exits the shell or terminates a shell script.

history

This command displays the list of previous command-line entries. The number of entries saved is
set in the HISTORY variable.

pushd [newdir | +n]
popd [+n]
dirs

These three commands maintain the shell’s directory stack. Let’s say you’re working in a directory
/src/myprogs/class/program.1/, and you want to temporarily go to another directory. Instead of
having to cd there and cd back to a very long directory name (i.e., lots of typing), you can use the
pushd command, like so:

gno% pwd

/src/myprogs/class/program.1
gno% pushd /etc

gno% pwd

/etc
gno% popd

gno% pwd

/src/myprogs/class/program.1

The pushd command stores the current directory on a stack, and then changes the current directory
to the argument newdir. When you want to go back to the original directory, type popd. The shell
will pull the last directory off the stack and make that directory the current directory. If no argument
is given, then the current directory is swapped with the directory that is currently on the top of the

25

Chapter 4. Builtin Command Reference

directory stack. If a digit argument, +n, is given, then the current directory will be swapped with the
directory in the nth position on the directory stack.

The popd command, when given without an argument, will pop the directory that is on top of the
directory stack, and make that directory the current directory. When given an argument of +n, popd
will remove the nth directory from the stack. It does not change to that directory.

The dirs command displays the current directory stack.

pwd

Displays the current working directory. This is useful if you have not configured the PROMPT
string to print your current working directory.

source

When a script is executed, gsh creates a new process to run the script. As a result, scripts cannot
change the parent shell’s environment. Instead of executing the script directly, you may use the
source command which does not create a new process to execute the script. Thus, the source
command is effectively exactly like typing all the commands in the script from the keyboard.

tset

The tset command causes the shell to reread the /etc/termcap file and reset its output system to use
the terminal type specified in the TERM environment variable. On startup, after reading the gshrc
file, gsh automatically does a tset. gsh also automatically does a tset whenever the TERM variable
is changed with the set command. You would use tset manually if, for example, a utility changed
the value of TERM.

which command [...]

Let’s say that you are working on a new version of the venerable shell utility ls. Since a search of
the hash table is done before searching the current directory, you might accidentally be using the
wrong version of the command. You make changes and run the new program, but your changes
don’t seem to appear! Use the which command to check your sanity. Which also comes in handy in
locating duplicate program names in the PATH directories (for example, an ls in both /bin and
/usr/bin.)

The way to access a utility in the current directory which has the same name as a program in the
PATH is to prefix the command name with ’.’, as in ’./ls’. See also rehash and unhash.

4.3. Kernel Commands

gsh provides a set of commands to control the GNO kernel. These commands mainly deal with job
control. See the chapter on Process Management in the GNO Kernel Reference Manual
(http://www.gno.org/~gno/kern.html).

26

Chapter 4. Builtin Command Reference

bg (%job | pid)

Starts the specified job, if stopped, and places it in the background.

fg (%job | pid)

Starts the specified job, if stopped, and places it in the foreground.

jobs [-l]

Displays a list of the shell’s jobs. If the -l switch is specified, the process id is included in the job list.

kill {[-SIGNAL] | %job | pid | [-l] }

The kill command will send the signal SIGNAL to the process number pid. The ps command
documented below describes how to list all process ID’s currently executing.

SIGNAL can be either a numeric value or string representing the signal to be sent to the process. All
signals are documented in the chapter on Interprocess Communication in the GNO Kernel
Reference Manual (http://www.gno.org/~gno/kern.html). Alternatively, specifying the -l option will
list all the signals and their names.

If the process number isn’t known, but the job number is, replace the pid with a ’%’ followed by the
job number.

ps

This command takes no arguments. When invoked, a list of all currently running processes is
displayed:

[2] 9:52pm root> ls -lR :hard:gno > /ram5/dev &
[1] + 35 Running ls -lR :hard:gno &
[3] 9:53pm root> ps

ID STATE TT MMID UID TIME COMMAND
1 ready co 1002 0000 0:26 NullProcess
2 ready co 1005 0000 0:02 gsh
35 ready co 100A 0000 0:01 ls -lR :hard:gno
36 running co 1007 0000 0:00 ps

[4] 9:53pm root>
[1] + Done ls -lR :hard:gno

The fields of the ps output are as shown below:

ID

A unique process ID assigned to a command by GNO. Use this number to reference any
process.

STATE

Current state of the process. Each process can be in any of the following states:

27

Chapter 4. Builtin Command Reference

RUNNING

The process is currently in execution.

READY

The process is not currently executing, but is ready to be executed as soon as it is assigned
a time slice.

BLOCKED

The process is waiting for a slow I/O operation to complete (for instance, a read from a
TTY).

NEW

The process has been created, but has not executed yet.

SUSPENDED

The process was stopped with SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU.

WAITING

The process is waiting on a semaphore "signal" operation. Programs waiting for data from
a pipe have this state.

WAITSIGCH

The process is waiting to receive a SIGCHLD signal.

PAUSED

The process is waiting for any signal.

TTY

Terminal connected to the process.

MMID

Memory Manager ID assigned to the process.

UID

ID of the user who initiated the process.

TIME

How much CPU time this process has used. This is not the elapsed time of the process.

COMMAND

Command-line string used to invoke process.

setdebug { val | {+|-}flag }

Turns GNO kernel debugging code on or off. The value passed consists of a bit field, where each bit
specifies a different type of debugging code to activate. An alternate method is to provide a list of

28

Chapter 4. Builtin Command Reference

debug flags, either preceded by a ’+’ or a ’-’. Those preceded by a ’+’ are activated, and those
preceeded with a ’-’ are deactivated. All debugging is deactivated by passing a value of 0. Running
setdebug wtth no arguments returns a list of the debugging flags. Legal flags include:

Table 4-2. Kernel Debug Flags

stop { %job | pid }

Stops the execution of all processes in a specified job.

4.4. Environment Commands

The last set of commands, environment commands, modify the gsh environment. Many of these
commands have been used in other parts of this manual and, therefore, should not be new.

alias [name] [value]

Creates an alias for a string. When this alias is referenced as a command, value will be expanded
into the command line. For commands that require many arguments or have several steps, you could
set up an alias to save typing. You can also use aliases to create new names for commands. To
obtain a list of all aliases, invoke alias with no arguments. To list the value of a specific alias, invoke
alias with name only.

export [variable ...]

When a shell environment variable is marked as exportable, any process that is created from within
the current process (most likely gsh), will be passed copies of the exported variables. See setenv
and Section 5.2.

hash

Displays a list of all commands currently in the shell’s hash table; i.e., a list of commands in the
various $PATH directories.

prefix [prefixnum [prefixname]]

GNO maintains a list of 32 ’prefixes’ for each process. Prefixes allow the user to reference a
directory with a number. While gsh provides this ability with environment variables, the prefix
command exists to support the ORCA compilers and other utilities that are dependent on certain
GS/OS prefixes. Appendix A contains a list of these prefixes and their "default" meanings, as
documented in the "Apple IIgs GS/OS Reference".

29

Chapter 4. Builtin Command Reference

If refixname is not given, then the value of prefixnum is displayed. If neither argument is given,
a list of currently assigned prefixes is displayed.

rehash

To decrease the time spent searching for a command, gsh builds a hash table of all commands which
were found in the pathnames set in the $PATH environment variable. When a command is invoked,
only this list is searched. When the $PATH environment variable is changed, gsh must rebuild this
list. The rehash command tells gsh to rebuild the list.

While the old list is still active, if $PATH is changed and one of the previous search paths is no
longer online, gsh will try and execute the command from the offline device, resulting in a
command failure.

set [var [value]] [...]
set value=value [...]
setenv [var value] [...]

Use these command to create or modify environment variables. If set is invoked with no arguments,
a list of the current environment variables is displayed. If only var is given as an argument, the
value of var is displayed. To set or reset a variable, use both the var and value arguments. There
are two ways to set a variable, either by "var value", or by "var=value". To set multiple
variables at once, simply list them all on the command line as shown above.

setenv works just like set, but automatically exports the variable(s) or lists only exported variables.

When using set or setenv to view a list of variables, exported variable names appear in all capital
letters.

unalias name [...]

To remove an alias from the alias list, use this command. To remove multiple aliases with one
command, specify all the aliases on the command line.

unhash

To disable the internal hash table created with the rehash command, use this command. This is
useful if you wish to use only utilities in the current working directory (during testing, for example).

unset var [...]

To remove a variable from the environment, use unset. unset accepts multiple names if more than
one variable is to be deleted. Future attempts to access the variable var will result in an error or a
NULL string, depending on the circumstances.

30

Chapter 5. Shell Variables

5.1. Using Shell Variables

gsh supports variables in the shell environment. These variables can be used by any shell utility or script.
Many EXE files and shell scripts predefine certain shell variables that contain formatting options or other
options for a specific utility. As an example, the ls utility looks for the variable TERM that defines the
terminal type currently being used. When ls is started, it reads the value of the TERM variable and avoids
printing Apple II specific MouseText characters if the set terminal type does not support them.

gsh has set aside certain variables for its specific use. Shell utilities should be aware of these variables
and use them appropriately. Use caution when changing shell variables, because the change could affect
more than just the shell.

5.2. Scope of Shell Variables

There are two types of processes that are involved in any discussion of a multitasking system. The
original process, gsh for example, is called a parent process. If gsh invokes a process, such as ls, cp, or
mv, that process is called a child process. It is possible for any process to define a variable. These
variables will not be made available to other processes unless the program that defined the variable
specifically makes them available.

The export command makes variables defined by one process available to its children. See the example
gshrc shell script shown in Section 1.2. In the case of the shell, most of its variables are exported and,
therefore, all shell utilities can read the value of a shell variable. However, programs cannot change the
value of a shell variable. In general, executables share their environment with that of the shell, so that a
utility can change variables in its parent’s environment. This allows communication between programs
and the shell.

5.3. Description of Predefined Shell Variables

The following variables have special meaning to gsh. Shell variable names are not case sensitive.

$0, $1, $2, ...

String values that contain the arguments to a shell script. Variable 0 contains the name of the script.
The first argument begins with variable 1 and so on.

31

Chapter 5. Shell Variables

$<

When encountered, the variable is expanded using a value obtained from standard input. This
provides a means of obtaining user input in script files. Note that the shell variables are expanded
before the command-line is executed (See Section 5.4.) When prompting the user for input, be sure
that the prompt is in a separate command-line than the $<. Also, if the user wishes to enter a value
with spaces, he must quote what he types with double-quotes.

$ECHO

A boolean value that, if defined, will cause commands in a shell script to be echoed to standard
output.

$FIGNORE

This variable, if set, contains a list of filename suffixes. When doing command or filename
completion, gsh will ignore any filename with a suffix listed in FIGNORE. For example, you might
want to set fignore=".A .ROOT .SYM" to ignore object files and other compiler droppings.

$HISTORY

A numeric value that contains the number of history commands (command-lines) remembered. If
the value is 0 or HISTORY is undefined, all commands will be remembered. Previous
command-lines can be called back with the UP-ARROW and DOWN-ARROW. (See Section 2.5.)

$HOME

The HOME directory is the main directory of the shell; it is the directory gsh defaults to when it
starts. The tilde ("~") character can be used as a shorthand method of accessing the HOME
directory (as discussed in Section 3.10).

$IGNOREEOF

A boolean value that, if enabled, will prevent ^D from exiting the shell.

$NOBEEP

A boolean value that, if set, will prevent gsh from sounding the speaker when errors occur while
editing a command-line.

$NODIREXEC

A boolean value that, if set, will disable gsh’s feature of treating directory names as commands; i.e.
if a directory is specified as a command, gsh will move to that directory as though the cd command
was being used.

$NOGLOB

A boolean value that, if set, will disable filename globbing. Command arguments will be passed to
their commands "as-is", without any wildcard expansion.

$NONEWLINE

A boolean value that, if set, will disable extraneous carriage returns being output before and after
command execution. Examples given in this manual have this option set.

32

Chapter 5. Shell Variables

$PATH

A string value that defines the pathnames where shell scripts, EXE utilities, and SYS16 programs
can be found (See Section 3.12). Because GS/OS uses colons as separators in pathnames, gsh
cannot allow colons to be used as separators in the PATH variable, as UNIX does. If one of the path
entries has a space within it (which is possible with the HFS FST), then the space should be quoted
with a backslash, "\".

$PRECMD

This is actually a special alias and not an environment variable. If PRECMD is defined then its
value is taken as a a command to be executed just before gsh prints the prompt for a command line.
For example, alias precmd qtime will print the time in English text before every prompt.

$PROMPT

When gsh prompts you to enter a command, the prompt that appears before the cursor can be
customized for your gsh environment. If PROMPT is undefined, the default prompt of "% " is used.
The prompt string recognizes certain character sequences in the PROMPT variable and interprets
them accordingly. The following are the special characters:

Table 5-1. Prompt Special Characters

$PUSHDSILENT

If this variable is defined, gsh will not print the directory stack after any of the directory stack
commands. (See pushd and popd in Section 4.2.)

$SAVEHIST

A numeric value that contains the number of commands to save to disk when exiting gsh. These
commands are then read back in when gsh is restarted which allows old commands to be reused. If
the value is 0 or SAVEHIST is undefined, no commands will be saved to disk.

$TERM

This variable contains the name of the terminal emulation that the shell and other applications
should use. By default, it is "gnocon". When the shell encounters a set term command, it
automatically calls the the tset to reload the termcap information. See also Appendix D.

33

Chapter 5. Shell Variables

$TERMCAP

This variable specifies the location of the termcap file. The shell and other applications look for
termcap in the /etc directory, but if TERMCAP is set, the fully specified termcap file is used
instead. This allows users to install custom termcap entries. See also Appendix D.

$USER

A string that represents the login name of the current user. This variable is usually set by login(8).

5.4. Accessing Shell Variables

Shell variables are defined or changed with the set command. The unset command is used to delete a
variable. See Section 4.4 for more information on the set and unset commands.

To access shell variables from the command line or a shell script, use the character "$" followed by the
variable name. The dollar sign character will expand the variable to its value. If you wish to use the
dollar sign character in a string from the command line, remember to enclose it in single quotes or use
the "\" escape character. If you use double quotes, the shell will try to expand the variable. To
differentiate the variable name from characters that may immediately follow it, the variable name may be
optionally surrounded with braces, "{" and "}".This provides a very powerful way of user interaction
with shell scripts.

34

Appendix A. Prefix Conventions

When gsh is started, GS/OS assigns certain values to individual prefixes, and usually the gshrc file also
sets some prefixes. A total of 32 prefixes are available to the user. The following list documents each
prefix and the purpose of each.

If version 2.x of the ORCA languages are being used, then prefixes 9 and 13 through 18 should mirror
prefixes 1 through 7. For a discussion on the differences in these two prefix sets, see your ORCA
language reference manual.

Table A-1. GS/OS Prefix Conventions

35

Appendix B. Gsh Errors

gsh tries, when an error occurs, to output an informative error message that will lead you to the solution
of your problem. This appendix documents all gsh error messages and what the probable cause of the
problem might be. There are five classes of errors: generic gsh, command-entry, syntax, execution, and
builtin. Each error is discussed separately.

B.1. Generic gsh Errors

These errors can typically occur at any time and may not be directly related to something the user has
done. Some of them are trivial, and some are very serious and should be reported immediately via the
GNOBugs (http://www.gno.org/~gno/bugs.html) web page.

gsh: There are stopped jobs.

All stopped jobs must be killed before exiting the shell. Use the jobs and kill commands.

B.2. Command Editing Errors

Command editing errors occur when entering information on the command-line. If you try to move the
cursor too far to the left or right of your command-line (i.e. before the first character or after the last
character), an error will occur. At present, gsh indicates a command-entry error by generating the bell
character (^G), which beeps the speaker. This is to notify you that the action you requested is not
possible.

B.3. Syntax Errors

Syntax errors occur while gsh is trying to understand the command you have entered on the
command-line. Problems arise when you wish to quote an argument (") and only enter one quote.

gsh: Missing ending ".

A second " wasn’t supplied when quoting text.

gsh: Missing ending ’.

A second ’ wasn’t supplied when quoting text.

gsh: Too many arguments, so no dessert tonight.

The command-line contained too many arguments which exceeded the available memory allocated
by gsh.

36

Appendix B. Gsh Errors

gsh: Not enough memory for arguments.

No memory was available for allocating command-line arguments.

gsh: Extra ’<’ encountered.
gsh: Extra ’>’ or ’>>’ encountered.
gsh: Extra ’>&’ or ’>>&’ encountered

Text may be redirected to only one file.

gsh: No file specified for ’<’.
gsh: No file specified for ’>’ or ’>>’.
gsh: No file specified for ’>&’ or ’>>&’.

A file must be specified when redirecting I/O.

gsh: ’|’ conflicts with ’>’ or ’>>’.
gsh: ’|’ conflicts with ’<’.

Piping is another form of redirection, thus pipes and redirections cannot be mixed.

B.4. Execution Errors

After gsh parses the command-line, it will then execute the command and pass any arguments to the
command. If, however, the command does not exist, gsh will report an error. The reason the command
does not exist could be either the command name was typed wrong or the command does not exist.

$0: Command not found.

$0 represents the command to be executed. Either the command name was entered incorrectly or the
command does not exist. Recheck the spelling of the command and check $PATH to make sure the
command exists in the pathname list.

$0: Not executable.

$0 represents the command to be executed. Check to ensure that the filetype is correct.

heh heh, next time you’ll need to specify a command before redirecting.

Redirection was specified but the command-line had no command.

Cannot fork (too many processes?)

An error was encountered forking a process. The most likely culprit is there are too many processes
running.

37

Appendix B. Gsh Errors

B.5. Builtin Command Errors

These are errors which can be returned by many of the builtin commands. Every builtin also contains a
usage message on the proper invocation method.

cd: Not a directory

Tried to change the cwd to a file that isn’t a directory.

prefix: could not set prefix, pathname may not exist.

GS/OS Prefix command failed, most likely the pathname did not exist or the disk is damaged.

setdebug: Unknown flag

An unknown flag was sent to setdebug. Run setdebug with no arguments for a list of possible flags.

ps: error in kvm_open()

ps was unable to access the process data structure. If the kernel data structures are damaged to the
point that this error occurs, it is likely that you will not be able to see this error.

set: Variable not specified

A variable was not passed to set, for example, "set =bar". Make sure the variable name was
specified without the preceding dollar sign. For example, if foo is not set, then "set $foo=bar"
would be expanded to "set =bar", resulting in this error.

kill: Invalid signal number
kill: Invalid signal name

See the signal(2) manual page for a list of valid signal names and numbers.

fg: No job to foreground.
bg: No job to background.
stop: No job to stop.

There aren’t currently any jobs so the attempted command is useless.

fg: No such job.
bg: No such job.
stop: No such job.
kill: No such job.

The specified job (or process) doesn’t exist.

fg: Gee, this job is already in the foreground.
bg: Gee, this job is already in the background.
stop: Gee, this job is already stopped.

Well, this should be self-explanatory. Also, some of these should be impossible to get, unless you’re
bound and determined to crash gsh, but then, these errors will keep you from crashing it, so, what’s
the point?

38

Appendix C. Non-Compliant Applications

GNO/ME wasn’t really designed with the intention of making every program you currently run work
under GNO/ME; that task would have been impossible. Our main goal was to provide a UNIX-based
multitasking environment; that we have done. We made sure as many existing applications as we had
time to track and debug worked with GNO/ME.

However, due to the sheer number of applications and authors, there are some programs that just plain
don’t work; and some that mostly work, except for annoyances such as two cursors appearing, or
keyboard characters getting "lost". The problem here is that some programs use their own text drivers
(since TextTools output was very slow at one time); since GNO/ME doesn’t know about these custom
drivers, it goes on buffering keyboard characters and displaying the cursor. There is a way, however, to
tell GNO/ME about these programs that break GNO/ME’s rules.

We’ve defined an auxType for S16 and EXE files, to allow distinction between programs that are
GNO/ME compliant and those that are not. Setting the auxType of an application to $DC00 disables the
interrupt driven keyboard buffering and turns off the GNO/ME cursor. Desktop programs use the
GNO/ME keyboard I/O via the Event Manager, and thus should not have their auxType changed.

You can change a program’s auxType with the following shell command:

chtyp -a \$DC00 filename

where filename is the name of the application. As more programmers become aware of GNO/ME and
work to make their software compatible with it, this will become less of a problem, but for older
applications that are unlikely to ever change $DC00 is a reasonable approach.

39

Appendix D. Termcaps

"Termcap" is short for "terminal capability", and is the name of a database which applications can use to
do full-screen output on any kind of terminal. The termcap database contains records for the various
supported terminals, each of which contains fields of the form

cap=value

Cap is a two-letter code that represents a cursor movement, screen mode change (such as inverse or
underline mode), and various other things. Value is usually a sequence of control characters that is sent
to a terminal to initiate the desired action. Value can also be ’boolean’, or yes/no, values, for such things
as "Does this terminal support cursor movement?". The termcap file is documented in termcap(5) manual
page.

The termcap library does not specifically require GNO/ME.

The following terminal types are supported in the GNO/ME termcap file:

The printer entries allow a formatted electronic manual page to be sent to the printer. For example, the
following script would bring up the manual page for ls, format it for the DeskJet 500, and print it with
italics and boldface:

set temp=$term
set term=deskjet
man $1 > .ttyb
set term=$temp

40

Glossary
Alias

A name used as an abbreviation for one or more commands. An alias allows you to replace any
command string with a short sequence of characters.

Applesoft

An implementation of BASIC for the Apple II.

APW

Apple Programmer’s Workshop. Similar to ORCA.

BASIC

Beginners All-purpose Symbolic Instruction Code. A simple computer language.

Built-in Command

A command processed by gsh. These commands are not external to the shell, but are included
within the gsh program.

Command

An action for gsh to perform. Commands can be either simple or compound. A simple command is
an alias assignment, variable assignment, I/O redirection, or built-in command. A compound
command is a pipeline.

Directory

A special type of file that contains a list of other files; usually used to categorize files related in
some way.

Environment

The state of a process, which includes information such as its open files, current directory (working
directory), and local and global variables. Three environments exist under gsh:

Child Environment

The environment of the child process.

41

Glossary

Current Environment

The environment of the current process.

Parent Environment

The environment of the parent process.

Environment file

A file that is interpreted by an application to allow the user to customize its operation. For gsh, this
file is gshrc.

Export

A way to pass a variable from a parent process to child process.

File

An object used to store data and/or programs. On the IIgs, files are tagged with types such as EXE,
SRC, TXT, and so forth.

Filter

A command that reads from its standard input and writes to its standard output. For example, a filter
program could be written to convert all characters to upper case. Filters are used mainly in pipelines.

Flag

A character used to represent an option to a command. Flags are either short or long options whose
character representations are "-" and "+".

Glob

Slang for Pathname Expansion.

GNO/ME

GNO Multitasking Environment. The complete package including the GNO kernel and the GNO
Shell.

GNO Kernel

Heart of GNO/ME. Executes processes when asked by the GNO Shell.

42

Glossary

GNO Shell

Provides an interface between the user and the GNO kernel.

gsh

GNO Implementation of a UNIX-like shell.

GS/OS

16 bit Operating System for the Apple IIgs.

History

A variable number of command-lines saved by gsh for future reference. The number of
command-lines saved is dependent on the HISTORY environment variable.

History file

A file containing command-lines entered while in a gsh session. The number of command-lines
saved is dependent on the SAVEHIST environment variable.

Interrupt

A signal generated by a sequence of keyboard characters or by a command that terminates the
current executing process, unless the process has set up a trap to handle the interrupt signal.

I/O Redirection

The process of changing the standard input, standard output, and standard error associated with a
process so that it is redirected to a file instead of the console.

Job

A set of related processes. A job can be either:

Background Job

A process that executes with the current process. Background jobs are not associated with the
terminal.

43

Glossary

Foreground Job

A process that is currently executing and which is associated with the terminal.

Multiprocessing

Indicates a machine with more than one CPU.

Multitasking

The ability to run more than one program at a time, or the illusion of more than one program
running at a time; usually the latter.

ORCA

Shell programing environment for the Apple //gs. Also a type of whale.

Path Search

The means of searching a pathname list for a command or script.

Pathname

A string used to identify a file.

Pathname Completion

The means of generating all pathnames matching a given pattern.

Pathname Expansion

The means of replacing a pattern with a list of pathnames matching that pattern.

Pattern

A string of characters used to match literal characters and/or multiple characters.

Permission

Each file has certain permissions associated with it: destroy, rename, backup, invisible, write, and
read.

44

Glossary

Pipe

A conduit through which a stream of characters can pass from one process to another. This is
accomplished by linking the standard output of one process to the standard input of a second
process.

Pipeline

Two or more processes connected together by pipes.

Process

A single thread of execution that consists of a program and an execution environment. If a process
creates another process, the creator is known as the parent process; the created process is known as
the child process.

Process ID

Each active process is uniquely identified by a positive integer called the process id.

ProDOS

8-bit Disk Operating System for Apple II computers.

Prompt

A message displayed by gsh when it is ready to receive a command.

Quoting

A means of including special characters as arguments to a command or as the command name.
Certain characters have certain meanings to gsh and quoting them makes gsh ignore them.

Reserved Word

A word that is treated specially by gsh. This word is part of the gsh grammar.

Script

A sequence of commands contained in a file.

45

Glossary

Signal

An asynchronous message that consists of a number or name that can be sent from one process to
another.

Standard Error

The file associated with error messages for a process. This file is usually the terminal.

Standard Input

The file associated with a processes input. This file is usually the terminal.

Standard Output

The file associated with a processes output. This file is usually the terminal.

Tilde Expansion

Words beginning with "~" are treated specially by gsh. The "~" is expanded to the value of the
HOME environment variable.

UNIX

Popular operating system which has growing use in education and business. One of the first
operating systems to support multitasking.

Variable

A named location in gsh that contains text. The text of a variable can be expanded in a command by
preceding the variable name with a dollar sign ($).

Wildcard

See Pattern and Pathname Expansion.

Working directory

The current directory.

46

	GNO Shell Users' Manual
	Table of Contents
	List of Tables
	Chapter 1. Getting Started with the GNO Shell
	1.1. Introduction
	1.2. Customizing the Shell Environment
	1.3. Invoking gsh

	Chapter 2. Interacting with the GNO Shell
	2.1. Executing Commands
	2.2. Commandline Editing
	2.3. Command Input
	2.4. Command Editing
	2.5. History Editing
	2.6. Command, Filename, and Variable Completion
	2.7. Other Ways of Entering Commands
	2.7.1. Terminal Input
	2.7.2. Script File

	Chapter 3. Using the GNO Shell More Productively
	3.1. What Does This Command Do?
	3.2. Option Arguments
	3.3. Entering Multiple Commands
	3.4. Using Aliases
	3.5. Redirecting Input and Output
	3.6. Pipelines
	3.7. Background Execution of Commands
	3.8. Job Control
	3.9. Working with Pathnames
	3.10. Pathname Expansion
	3.11. Quoting Special Characters
	3.12. How gsh Finds a Command

	Chapter 4. Builtin Command Reference
	4.1. Builtin vs External Commands
	4.2. Builtin Shell Commands
	4.3. Kernel Commands
	4.4. Environment Commands

	Chapter 5. Shell Variables
	5.1. Using Shell Variables
	5.2. Scope of Shell Variables
	5.3. Description of Predefined Shell Variables
	5.4. Accessing Shell Variables

	Appendix A. Prefix Conventions
	Appendix B. Gsh Errors
	B.1. Generic gsh Errors
	B.2. Command Editing Errors
	B.3. Syntax Errors
	B.4. Execution Errors
	B.5. Builtin Command Errors

	Appendix C. NonCompliant Applications
	Appendix D. Termcaps
	Glossary
	Alias
	Applesoft
	APW
	BASIC
	Builtin Command
	Command
	Directory
	Environment
	Environment file
	Export
	File
	Filter
	Flag
	Glob
	GNO/ME
	GNO Kernel
	GNO Shell
	gsh
	GS/OS
	History
	History file
	Interrupt
	I/O Redirection
	Job
	Multiprocessing
	Multitasking
	ORCA
	Path Search
	Pathname
	Pathname Completion
	Pathname Expansion
	Pattern
	Permission
	Pipe
	Pipeline
	Process
	Process ID
	ProDOS
	Prompt
	Quoting
	Reserved Word
	Script
	Signal
	Standard Error
	Standard Input
	Standard Output
	Tilde Expansion
	UNIX
	Variable
	Wildcard
	Working directory

